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Abstract. We propose here to use network sciences, specifically an approach based
on the Barabási-Albert model, to define a dynamic communication topology for
Particle Swarm Optimizers. We compared our proposal to previous approaches, in-
cluding a simpler Barabási-Albert-based approach and other most used approaches,
and we obtained better results in average for well known benchmark functions.

1 Introduction

Particle Swarm Optimization (PSO) is a swarm intelligence technique that has been
widely used to solve optimization problems in hyper-dimensional search spaces
with continuous variables. PSO was first proposed by Kennedy and Eberhart in
1995 [15] and it was inspired by the social behavior of flocks of birds working
together to find food. In the PSO paradigm, each particle in the swarm represents a
candidate solution in the fitness function domain. During the algorithm execution,
each particle adjusts its velocity and position based on the current position, the cur-
rent velocity, the best position achieved by itself during the search process so far
and the best position obtained by the particles among a pre-determined neighbor-
hood during the search process so far.

There are a few important issues that influence on the convergence velocity and
on the quality of the final solution returned at the end of the algorithm execution.
Among them are: the equation used to update the velocities of the particles, the
mechanisms deployed to avoid explosion states, the quality of the Pseudo Random
Number Generator (PRNGs) and the communication scheme adopted to exchange
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information among the particles. There are several works that tackle the three for-
mer issues [11, 8, 4]. The latter has been been widely discussed since it defines the
neighborhood of the particles and, as a consequence, determines how the informa-
tion flows through the whole swarm [6, 16].

Previous works have shown that less connected topologies slow down the infor-
mation flow, since the information about the convergence is transmitted indirectly
through intermediary particles [16]. On the other hand, highly connected topologies
diminish the average distance between any pair of individuals. As a consequence,
there is a tendency for the whole swarm to move quickly toward the first local opti-
mum found by any particle of the swarm when the average distance between nodes
is too short (e.g. a small-world topology). Unfortunately, in simple and static com-
munication schema, fast convergence generally means premature convergence to a
local optimum, specially in multimodal search spaces [6].

Recently, many efforts have been made to analyze how to link components in
complex systems [17]. Some examples are social networks, World Wide Web, power
grids [20] and biochemical networks [18]. In all these systems, there are several as-
pects that can be analyzed, such as the way these components can interact with
themselves, or the pattern of connections between the components, which is in gen-
eral highly correlated with the system behavior.

Until the last decades, perhaps due to the lack of deeper analysis or because of the
limited processing capacity of computer, real-world networks were usually seen as
a result of a completely random process [2]. Indeed, the study of real networks has
gained relevance since they present many interesting features, such as fast spread of
information through the network compounds, robustness, reliabilty [9, 10, 7].

Barabási and Albert showed that large real networks follow a scale-free power
law distribution. They pointed out that this feature was a consequence of two under-
lying mechanism: (i) networks expand continuously by addition of new vertices; and
(ii) new vertices usually attach to nodes that are already well connected [3]. Thus,
they proposed a model, known as Barabási-Albert model (BA model), consisting
of an algorithm for generating random scale-free networks using a preferential at-
tachment mechanism [1]. A variation of the BA model, called Bianconi-Barabási
model, that the probability of a node to connect to one another is given by a term
that depends on the fitness of the involved node [5].

The idea of preferential attachment and complex networks was already proposed
to define the PSO communication topology, as in the work of Godoy and von Zuben
[13]. In this approach, the PSO starts with a scale-free topology generated by the
BA model, and then, the particles are connected or disconnected along the itera-
tions depending on the fitness of the particles. One may notice that there are some
undesired outcomes from this approach: (i) since the swarm is initiated with a small-
world topology, probably the swarm will present a high probability to be stuck in a
local minima, specially in multimodal search spaces; (ii) the algorithm is not quick
for connecting and disconnecting particles, and this behavior is not a desired feature
for dynamic or multimodal problems; and (iii) the mechanism used to reconnect the
particles does not take into account the past of the particle, it solely depends on the
current fitness of the particle.
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In this paper, we propose a novel approach to define the dynamic topology based
on preferential attachment. The proposal aims to balance information flow in the
swarm. The topology is initiated as a local topology and evolves to allow the parti-
cles to increase the communication capability when it is necessary. Besides, it also
considers if the particles are improving or not their solutions. The paper is organized
as follows: we briefly review the Particle Swarm Optimization in the next section.
In Section 3, we present our proposal to define a dynamic communication topol-
ogy. The simulation setup and results are given in Section 4. Finally, we present our
conclusions and suggest some future works in the last section.

2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is composed by a swarm of particles, where
each particle has a position within the search space xi(t) and each position repre-
sents a possible solution for the optimization problem. The particles fly through the
search space of the problem searching for the best solution. Each particle updates its
position according to the current velocity vi(t), the best position found by the parti-
cle itself [Pbesti(t)] and the best position found by the neighborhood of the particle i
during the search so far [Nbesti(t)].

Therefore, the velocity and the position of every particle are updated iteratively
by applying the following update equations for each particle in each dimension d:

vi(t + 1) = vi(t) + r1c1[Pbesti(t)−xi(t)] + r2c2[Nbesti(t)−xi(t)], (1)

xi(t + 1) = xi(t) + vi(t + 1), (2)

where r1 and r2 are numbers randomly generated by an uniform distribution in the
interval [0,1]. c1 and c2 are the cognitive and the social acceleration constants, re-
spectively. The original PSO updates the velocities of the particles considering the
current value for the velocity of the particles, as presented in equation (1). Clerc [8]
performed a study on the dynamic of the particles and stated a parameter known as
the constriction factor (χ) that avoids the explosion state. χ is defined in equation
(3). The velocity update equation is depicted in equation (4).

χ =
2

|2−ϕ−
√

ϕ2− 4ϕ|
, ϕ = c1 + c2, (3)

vi(t + 1) = χ · {vi(t) + r1c1[Pbesti(t)−xi(t)] + r2c2[Nbesti(t)−xi(t)]} . (4)

The way the information flows through the particles is determined by the commu-
nication topology used by the swarm [12]. The topology of the swarm defines the
neighborhood of each particle, that is the subset of particles which the particle is
able to communicate with [6]. In the context of social networks, there are many
factors that influence the flow of information between nodes [19, 20]. These as-
pects include the degree of connectivity among the nodes, the average number of
neighbors in common per node and the average shortest distance between nodes.
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Kennedy and Mendes analyzed these factors on the particle swarm optimization
algorithm [16]. It has been shown that the presence of intermediaries slows the in-
formation flow down. On the other hand, the information moves faster if more pairs
of individuals are connected. Thus, when the average distance between nodes are
too short, there is a tendency for the population to move quickly toward the best
solution found in earlier iterations. For simple unimodal problem, it usually im-
plies in a faster convergence to the global optimum. However, this fast convergence
might means a premature convergence to a local optimum, specially in multi-modal
problems [6]. In this case, communication topologies with intermediaries, i.e. with
a lower number of connections, could help to reach better results.

A first communication model proposed by [14] to model the natural behavior
of flocks of birds presented a dynamic topology based on the distance between the
particles. However, due to the high computational cost, it was discarded, albeit the
similar behavior of flocks of birds [6]. The global topology, which is often known
as Gbest , is a static topology proposed in the PSO white paper [15]. In the Gbest ,
all the particles of the swarm are neighbors of each particle of the swarm. This
means that the social memory of the particles is shared by the entire swarm. This
topology leads to a fast convergence, since the information spreads quickly. On the
other hand, in less connected topologies, each particle only shares information with
a subset of the swarm. Thus, the social memory is not the same for the whole swarm.
The most used local topology is called Lbest . In the Lbest approach, each particle has
two neighbors and the neighbor is based on the index. For example, the neighbors
of particle #2 are particles #1 and #3. The Lbest helps to avoid a premature attraction
of all particles to a single spot of the search space, once the information is spread
slowly and the swarm has more chances to explore different regions of the search
space. Nevertheless, it presents a slower convergence. The two extreme behaviors
of the Gbest and Lbest topologies have encouraged efforts to propose approaches
that can present fast convergence while avoiding local minima. Indeed, many other
topologies were already proposed, such as von Neumann, Focal, Four Clusters, Clan
PSO, among others.

Godoy and von Zuben proposed to use a scale-free based topology, called Com-
plex Neighborhood based Particle Swarm Optimization (CNPSO)[13]. The evolu-
tion of the topology is based on the Barabási-Albert model and it tries to maintain
the scale-free characteristic of the topology, while the optimization is being per-
formed. In the CNPSO, the swarm topology starts with a scale-free topology gen-
erated by the BA-model and it does not take into account any particle information.
Thus, it is possible to have a bad particle as a hub in the swarm. Moreover, the ini-
tial topology has a small mean-shortest path length. This feature is not desirable in
the initial stages of the algorithm because it can attract the swarm to a local opti-
mum in earlier iterations, since the information flows fast. The CNPSO reconnecting
mechanism also does not take into account the fitness information through the iter-
ations. For example, it does not matter if the particle has stagnated or not in a local
optimum. After times number of iterations, random particles will have its connec-
tions mutated even if they are having success or not. Therefore, this approach is not
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dynamic in the sense that its mechanism is not based on the swarm condition but
rather it is based on random particles in any state.

3 Our Proposal

We aim to create a dynamic topology which can balance the search behavior of
the swarm. It begins with the swarm being less connected. As a consequence, the
swarm will present a high capacity to explore along the entire search space. Besides,
it is desirable to change the communication scheme of the particles as they reach a
stagnation state. Thus, in order to state when a particle k is stagnated, a new attribute,
named Pkfailures, is included to the particles. If the particle k does not improve its
position in the current iteration, Pkfailures is incremented, otherwise Pkfailures is set
to zero.

As each particle tries to find better particles to be connected with, there is a pref-
erential attachment connecting mechanism based on the particles fitness. Therefore,
to have this mechanism, we used a roulette wheel based on a rank that depends on
the fitness of the particles. The best particles have more chances to be chosen for
new connections. The proposed algorithm is shown in Algorithm 1.

Algorithm 1. Pseudocode of our proposal
Generate the neighborhood of particles with a ring topology1

Initialize position, velocity and personal best position of the N particles2

while stop criterion is not satisfied do3

for k = 1 to N do4

Update Particle k5

if Particle k improved its position then6

Update pk best position vector7

pk f ailures← 08

else9

pk f ailures← pk f ailures + 110

if pk f ailures > f ailures threshold then11

for n = 1 to N do12

A particle r is chosen by using a roulette wheel based on the rank of13

the particles
if n = r and pn is better than pk then14

Connect Particle n to Particle k15

else16

Disconnect Particle n and Particle k17

Update Particle k18

The algorithm begins with a ring topology with N particles. For all PSO iter-
ations, each particle k has Pkfailures updated according to the fitness evolution.
When the threshold of failures ( f ailures threshold) is reached, the particle searches
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for better particles to follow. The selection of new neighbors is based on a roulette
wheel with a fitness-based rank.

The threshold of failures is crucial to the algorithm performance. If it has a low
value, the particles will easily try to reconnect. Otherwise, particles will maintain
the previous behavior for a long time.

4 Simulation Setup and Results

We used four well-known benchmark functions to evaluate our proposal and com-
pare it to the previous approaches [6]. The functions are used for minimization prob-
lems. Two of them are unimodals, Rosenbrock and Ackley, and two are multimodal,
Rastrigin and Griewank. The global optimum of all of them is at (0, ...,0).

In all experiments, all functions were implemented in 30 dimensions. We have
executed the PSO algorithm 30 times with 3,000 iterations in all functions. The
threshold of failures for the particles was set to 100. The particles were updated
according to the Equation 4. We used c1 = 2.05 and c2 = 2.05.

Table 1 presents the mean value and the (standard deviation) of the best fitness
found for each function by each tested topology. One can observe that the results
achieved by our proposal are similar to the Local topology for the functions Ackley,
Rosenbrock and Griewank, but we obtained the best performance for the Rastrigin
function. One can also notice that we far outperformed the Global topology and the
CNPSO approach (static complex topology).

Table 1. Mean value and (standard deviation) of the best fitness found for each function

PSO Topology Rastrigin Ackley Rosenbrock Griewank

Global topology 38.1401 7.4857 0.0011 0.0134
(9.2908) (9.3576) (0.0015) (0.0189)

Local topology 34.5914 0.0000 6.2587×10−8 0.0025
(9.0085) (0.0000) (1.6376×10−7) (0.0052)

Static complex topology 33.1985 0.7740 0.0017 0.0119
(8.6007) (2.2623) (0.0023) (0.0148)

Our proposal 14.0476 0.0000 1.7766×10−7 0.0037
(Dyn. Complex Topology) (5.2370) (0.0000) (2.7928×10−7) (0.0063)

The average values of the best fitness achieved along the iterations by the PSO
algorithm using the four different topologies for the functions Rastrigin, Ackley,
Rosenbrock and Griewank are shown in Figure 2. As can be seen, our proposal con-
verges faster for Rosenbrock and Ackley functions. Besides, our approach does not
get stuck in local minima in the Rastrigin function, while all other tested approaches
quickly stagnate.
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(a) Rastrigin (b) Ackley

(c) Rosenbrock (d) Griewank

Fig. 1. The average value of the best fitness achieved in each function through the iterations
by the PSO algorithm using different topologies

5 Conclusions and Future Works

In this paper, a novel dynamic communication topology based on the Barabási-
Albert model for the Particle Swarm Optimization is proposed. In this approach, the
particles explore the search space at the beginning and, as the particles get stagnated,
they try to seek for better particles to follow. This search for new neighbors is based
on the preferential attachment of the Barabási-Albert model.

The simulation results showed that the proposed approach is in average better
than other well known topologies and outperforms a simpler previously proposed
topology based on the Barabási-Albert model.

For the future, we intend to test this approach in dynamic problems. We also
intend to investigate the impact of the failures threshold of the particles in the opti-
mization process and the impact of the initial topology as well.
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